news

行业资讯

LCD/OLED/量子点显示技术对比2022-12-01

      什么是量子点

      首先,我们需要了解什么是量子点(QD)。量子点是非常小的半导体颗粒,只有几纳米大小,如此小,以致它们的光电性质不同于较大颗粒的光电性质。

      发光原理是通过电或光对量子点材料施加刺激,量子点的材料将发射特定频率的光,并且这些频率可以通过改变量子点的尺寸大小和形状进行改变,从而达到精确地调谐。

      简单通俗的说,量子点的光电性质与以往的发光显示颗粒大不一样,量子点因为颗粒非常小,以纳米为单位,导致量子点的显示颜色是以改变颗粒的大小形状而进行改变,也正因为如此,理论上来讲,量子点显示的色谱更具有连续性,成本也会更低。

      不同大小尺寸的量子点会发出不同的颜色,量子点当受到光或电的刺激时,就发出有色光线,光线的颜色由量子点的组成材料和大小形状决定,一般颗粒越小,会吸收长波,颗粒越大,会吸收短波。

      2nm大小的量子点可吸收长波的红色,显示出蓝色;8nm大小的量子点可吸收短波的蓝色,呈现出红色。这一特性使得量子点能够改变光源发出的光线颜色。相比原来的显示技术来说,量子点显示的RGB三原色会更加纯净。

      目前量子点在显示器上的应用

      其实量子点技术并非新兴的技术,早在1983年美国贝尔实验室的科学家已经对其进行了研究。

      只是经过数年之后,美国耶鲁大学的物理学家马克·里德将这种半导体微块正式命名为“量子点”并沿用至今,所以严格意义上讲这并不是一个新的技术,只是在最近几年,以三星为首的显示巨头对量子点技术产生了浓厚的兴趣。

LCD面板

      LCD显示屏结构非常复杂,LCD 的构造是在两片平行的玻璃基板当中放置液晶盒,下基板玻璃上设置TFT(薄膜晶体管),上基板玻璃上设置彩色滤光片,通过TFT上的信号与电压改变来控制液晶分子的转动方向,从而达到控制每个像素点偏振光出射与否而达到显示目的。

      而按照背光的光源,LCD显示器又分为CCFL(冷阴极荧光灯管)和LED(发光二极管)两种,我们普遍认为的LCD和LED是两种显示屏的认识是错误的,完全是广大厂商的误导,这两者仅仅是背光光源的不同而已。

OLED面板

      而OLED面板则与LCD面板大不相同,相比较而言会OLED面板结构会更简单,OLED的全称为有机发光二极管,也就是说,OLED面板的发光材料为有机材料,相比于无机材料,有机材料在寿命方面有天生的短板。

      OLED显示技术具有自发光的特性,采用非常薄的有机材料涂层和玻璃基板,当有电流通过时,这些有机材料就会发光,而且OLED显示屏幕可视角度大,并且能够节省电能。

      因为自发光的特性,OLED在黑色方面表现的更纯粹,因为材料只要不发光,显示的就是黑色,同时视角广、对比高、耗电低、反应速率高都是OLED面板的特性。

量子点面板

      其实就目前的量子点屏幕来说,与传统的LCD面板仅仅是做了背光方式上的改变,是作为LCD面板的延伸,并没有什么根本上的改变。

      通俗点说,目前的量子点显示器就是在VA面板中加了一张膜,也就是上图中的那张QDEF膜。

      我们都知道,目前LED背光方式中,为了显现出三原色,有两种背光方法:

      其一是直接通过RGB LED灯光进行背光,这样成本非常高基本没有显示器在使用;其二是目前商用显示器的普遍背光方式:伪白光LED背光,利用像素点的荧光粉显色,什么是伪白色LED背光呢,就是通过在蓝光LED中加入黄色荧光粉的方式发出白色背光(上图中的blue LEDs位置)。

      但如果是通过量子点进行显色的话,就不需要进行白光背光,原因有两个(其实算起来应该算一个):光致发光的原因,蓝光量子点无法登场,所以在背光中必须加入蓝色光源,其二,是因为目前的量子点只负责产生绿光和红光,所以必须将原背光模组中的白光LED换成蓝光LED。